| |
- avestd(vals)
- binomial(frac_exp, draws, hits)
- (frac,draws,hits) Binomial theorem expectation of getting exact number of hits
- binomialsumtail(frac_exp, draws, hits)
- (frac,draws,hits) Sum of the tail of the binomial distribution
- fact(a)
- fact(a)
- hypgeomsummore(numinteresting, total, numpicked, numfound)
- hypgeomsummore (numinteresting, total, numpicked, numfound)
- lzprob(z)
- Returns the area under the normal curve 'to the left of' the given z value.
Thus,
for z<0, zprob(z) = 1-tail probability
for z>0, 1.0-zprob(z) = 1-tail probability
for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
Adapted from z.c in Gary Perlman's |Stat by Gary Strangman in stats.py
General Public License (GPL) v2, https://www.gnu.org/copyleft/gpl.html.
Usage: lzprob(z)
- median(vals)
- nlog10(x, min=9.9999999999999999e-300)
- norm_pvalue(ave, std, obs)
- rank_pvalue(obs, values)
- stircomb(x, y)
- stircomb (x,y)
- stirhypgeom(numinteresting, total, numpicked, numfound)
- stirhypgeom (numinteresting, total, numpicked, numfound)
- stirling(n)
- stirling(n) (approximationg of log(n!))
|