Short descriptions of the programs and modules included with TAMO are provided below. Click HERE to go back to the TAMO Homepage.

Routines for Import Executable File Description
 
X
GetDataFiles.pyDownload support data files and routines over the internet.
X
 HT.pyLoad/Encapsulate/Slice High-throughput (genome-scale) datasets
X
X
MotifMetrics.pyCompute motif overrepresentation statistics among a sequence set, as compared to all sequences in a genome. Search of highest scoring k-mer motifs.
X
 MotifTools.pyKitchen-sink motif object
 
X
Sitemap.pyPrint ascii-maps of motif occurence among sets of sequences
X
 DataSources/GO.pyInterface to Gene Ontologies, including statistical tests.
X
 DataSources/Holstege.pyInterface to expression rate data from Holstege et. al.
X
 DataSources/Novartis.pyInterface to GeneAtlas.
X
 DataSources/PDB.pyA very simple PDB parser for 3-D protien/DNA structures
X
 DataSources/SGD.pyInterface to the SGD yeast database, including genomic sequence.
X
 DataSources/Yeast6kArray.pyInterface to the 6k intergenic array, including mappings from probes to genomic features.
X
 Clustering/Kmedoids.pyK-medoids algorithms for motif clustering.
X
 Clustering/MotifCompare.pyUtility routines for aligning and comparing motifs
X
X
Clustering/UPGMA.pyUPGMA algorithm for motif clustering.
X
 MD/EM.pyInterface to C++ routines for MD via Expectation Maximization
X
 MD/MDsupport.pyWrapper for motif-related C++ routines
X
X
MD/MDscan.pyInterface to MDscan program.
X
X
MD/AlignAce.pyInterface to the AlignACE program.
X
X
MD/Meme.pyInterface to the MEME program.
X
X
MD/TAMO_EM.pyTAMO's very own EM implementation, that allows careful control over the seeds used for search.
 
X
MDconvert/ace2tamo.pyMotif File Format Conversion Programs.
The TAMO format is described here.
 
X
MDconvert/kellis2tamo.py
 
X
MDconvert/meme2tamo.py
 
X
MDconvert/memeset2tamo.py
 
X
MDconvert/tamo2table.py
 
X
MDconvert/tamo2tamo.py
X
 localpaths.pyPath information for TAMO
X
 paths.pyMore Path information for TAMO
 
X
seq/Background.pyCompute high-order Markov background model from a collection of sequences.
X
 seq/FakeFasta.pyGenerate, seed, and randomly select sequences (for statistical testing.)
X
 seq/Fasta.pyFast Fasta IO
 
X
seq/GenerateFastas.pyGenerate a collection of sequence files from genome-wide data and sequence.
X
 seq/Human.pyFast, random-access interface to human sequence.
X
 util/Arith.pySeveral very useful arithmetic routines and statistical test (hypergeometric & bionomial)
X
 util/PermuteTools.pyRoutines for generating sequence permutations of k-mers. Useful for coarse-grained motif search (if fused with MotifMetrics.py)
X
 util/Poisson.pyPoisson statistical tests and fitting routines to Poisson distributions
X
 util/WMWtest.pyWilcoxon / Mann-Whitney rank sum test
X
 util/swilk.pyShapiro-Wilk normality test (interfaces to underlying C++ routine)