| |
- EM
- MarkovBackground
-
- Zeroth
- MotifCandidate
- Probe
class EM |
| |
Methods defined here:
- EM_C(self, Model, probes, store_Zs='')
- EM_Cstart(self)
- __init__(self, seed_seqs, all_seqs, width=6, verbose='')
- all_Wmers(self, N, seq)
- best_by_Z(self, Wmers_by_seq)
- calcmask(self, width)
- compute_joint(self, model, Wmers_by_seq)
- report(self)
- seed_models(self)
|
class MarkovBackground |
| |
Methods defined here:
- ___getitem__(self, key)
- __init__(self, species='YEAST', seqs='')
- compute_conditional(self)
- freq_from_fasta(self, fastafile)
- freq_from_file(self)
- freq_from_seqs(self, seqs)
- freq_from_seqs_old(self, seqs)
- logbackground(self, seq)
- permute(self, letters, depth, seqs=[''], curdepth=0)
- study_seqs(self, seqs)
- zeroth(self)
|
class MotifCandidate |
|
A candidate for Motif consists of the following:
A set of segments "wmers"
A pssm computed from these segments
A score (probably the MAP score described in the literature)
General propeties:
# segments
Width
A candidate must also be able to:
Evaluate its own score
Modify itself:
Add wmer
Remove wmer |
|
Methods defined here:
- MAPpurge(self, verbose='')
- MAPscan(self, nmers)
- __init__(self, wmers='')
- __repr__(self)
- check_and_update(self, wmer, count, verbose='')
- computeMAP(self, in_wmers='')
- computeMAP_memo(self, wmer, count)
- find_wmers(self, seqs)
- has_wmer(self, wmer)
- logPbackground(self, wmer)
- purge(self, verbose='')
|
class Zeroth(MarkovBackground) |
| |
Methods defined here:
- __init__(self, bgD={'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25})
Methods inherited from MarkovBackground:
- ___getitem__(self, key)
- compute_conditional(self)
- freq_from_fasta(self, fastafile)
- freq_from_file(self)
- freq_from_seqs(self, seqs)
- freq_from_seqs_old(self, seqs)
- logbackground(self, seq)
- permute(self, letters, depth, seqs=[''], curdepth=0)
- study_seqs(self, seqs)
- zeroth(self)
| |